Entwicklung einer rechnergesteuerten Potentialsonde für Rißwachstumsmessungen

Development of a computer-controlled potential drop system for crack growth measurements

K. F. Stärk, Baden/Schweiz

Zusammenfassung

Eine Methode, die sich zur Ermittlung des Risswachstums bewährt hat, ist die elektrische Messung des - mit wachsendem Riss sich ändernden - Probenwiderstandes mit Hilfe der sog. Potentialsonde. Als Kombination der Gleich- und Wechselstrommethode wurde eine rechnergesteuerte DUPLEX-Potentialsonde entwickelt, die die Vorteile beider Verfahren ausnutzt. Benutzerfreundliche Software ermöglicht den Einsatz der Sonde bei zyklischer Beanspruchung (Ermüdungsrisswachstum und Anrissbildung) sowie bei zügiger (Bruchzähigkeitsmessungen) und statischer (Spannungsrisskorrosion bzw. Kriechrisswachstum) Belastung.

The so called potential drop system is an improved method for the electrical measurement of crack growth. As a combination of DC-and AC-method a computer-controlled DUPLEXpotential drop system was developed to use the advantages of both systems. With a menu-based software the potential drop measurement system is used for cyclic stresses (fatigue crack growth or the detection of crack initiation), for slow loading rates (fracture toughness measurement) or constant loads (corrosion or creep crack growth).

1. Messprinzip DUPLEX-Potentialsonde

Wie aus sämtlichen Veröffentlichungen hervorgeht, hat sowohl die Gleichstrom- als auch die Wechselstrompotentialsonde (DC- bzw. AC-Verfahren) ihre spezifischen systembedingten und messtechnischen Vor- und Nachteile.

331

Ziel der Entwicklung war, eine Potentialsonde zu entwikkeln, die möglichst die Vorteile beider Systeme verbindet und mit hoher Genauigkeit, Störsicherheit und Benutzerfreundlichkeit zur Risswachstumsmessung bei statischer, zügiger und zyklischer Beanspruchung von Proben geeignet ist. Diese Problemstellung führte zum Messprinzip der DC/ AC-Sonde. Das Messprinzip der sog. DUPLEX-Potentialsonde ist in <u>Skizze 1</u> dargestellt. Wichtige Merkmale der DUPLEX-Sonde sind:

- rechnergesteuerte Stromquelle mit gepulstem, umkehrbarem Stromfluss zur Elimination von Thermospannungen und Reduktion der Strombelastung von Probe und Zuleitungen
- niedrige Stromwechselfrequenz zur Vermeidung des Skin-Effektes
- peak-Messung zum Zeitpunkt der Maximallast (bei voller Rissöffnung) mit wählbarer Anzahl von Einzelmessungen
- Differenzmessung zwischen Potentialen der beiden Stromrichtungen (gleicher elektrisch-magnetisch-thermischer Probenzustand)
- beliebige Wahl der stromlosen Pausenzeiten nach jedem Messzyklus
- rechnergesteuerte Anpassung an Prüffrequenzen von 0 bis 400 Hz
- wählbare Mittelwertbildung und Auswertung der Einzelmessungen.

2. Probenform, -einspannung und Prüfmaschine

Die bisherigen Versuche wurden an Compact-Tension-(CT-)Proben, Double-Cantilever-Beam-(DCB-)Proben und Rundproben mit zylindrischer Messlänge vorgenommen. Im Prinzip ist die Probenform beliebig, wenn auf eine beidseitige elektrischisolierende Einspannung zur Prüfmaschine hin geachtet wird. Die Kontaktierung der Stromzuführungen und der Potentialabgriffe lässt sich leicht und schnell mit aufschweissbaren Gewindebolzen oder Lötungen vornehmen. Der Ort der Kontaktierung hängt von der Probe und der Problemstellung ab. Für die DCB-Probe, s. Skizze 2, ergab sich für die Gewindebolzen auf der Stirnfläche für eine Risslänge von 20 mm bis 50 mm eine lineare Abhängigkeit zwischen Potential und Risslänge in der Form

 $a = a_0 + 47, 4 \Delta R/R_0$.

Bei der CT-Probe (s.<u>Skizze 3</u>) ist der Zusammenhang leicht parabelförmig in der Relation

 $a = w \cdot \left[0,239 + 0,764 \cdot \Delta R/R_0 - 0,194 (\Delta R/R_0)^2\right]$

für a/w = 0,2 bis 0,8. Die Zusammenhänge wurden durch Kalibriermessungen ermittelt und sind unabhängig vom Werkstoff bzw. dem spezifischen Widerstand des Probenmaterials. Als Prüfmaschinen sind alle servohydraulischen oder Resonanzprüfmaschinen geeignet. Die peak-Messung bei zyklischer Beanspruchung erfordert ein lastsynchrones Signal von der Prüfmaschine mit $\ge + 1$ V zur Triggerung des Messvorganges.

3. Vorverstärker

Entscheidend für eine genaue Messung der sehr kleinen Potentiale in µV-Bereich und den Aenderungen mit der Risslänge im nV-Bereich ist die Qualität des Vorverstärkers, dessen Ausgangssignal dem Messwerterfassungssystem zugeleitet wird. Aufgrund von Erfahrungen mit anderen Risstiefenmessgeräten und Verstärkern wurde ein hochgenauer und stabiler Vorverstärker mit 1000-facher Verstärkung mit neuesten rauscharmen IC's (Operationsverstärker) entwickelt. Durch einen optischen Isolationsverstärker(2fach), vollständige elektrische Abschirmung und hohe thermische Trägheit des Aufbaues konnten äussere Störungen und Erdschleifen weitgehend vermieden werden.

Bei der Nullmessung werden vom Rechner (bei <u>+</u> 5A Strombelastung) Probenwiderstände >10 µOhm akzeptiert. Durch die Differenzmessung aus beiden Stromrichtungen können auch Störungen aus dem Thomson-Effekt, aus magnetischen Einflüssen und ohm'schen Widerstandsänderungen der Zuleitungen und der Probe weitgehend eliminiert werden. Bei der Nullmessung wird ein Nullabgleich (Spannungsunterdrückung) vorgenommen, so dass lediglich das Differenzsignal, das

333

aus der Risslängenänderung resultiert, verstärkt wird. Im Vorverstärker integriert ist der Verstärker für die Probentemperatur (Thermoelement Ni-CrNi, linearisiert bis 900°C), die bei jedem Messzyklus zur Korrektur des Probenwiderstandes mitgemessen wird. Durch automatische Stromreduzierung wird ein Uebersteuern der Verstärker vermieden.

4. Rechner und Messwerterfassung

Als Laborrechner wurde eine vorhandene DEC-Rechenanlage pdp 11/23 mit Floppylaufwerk, Drucker LA50 und Terminal VT105 benutzt. Zur Messwerterfassung wurde das Messystem MINC-11 (DEC) eingesetzt.

Bei jedem Zyklus werden erfasst:

- bis zu 125 Potentialmessungen bei positiver Stromrichtung
- bis zu 125 Potentialmessungen bei negativer Stromrichtung
- bis zu 250 Probentemperaturmessungen
- bis zu 250 Strommessungen
- die Anzahl peaks zur Ermittlung der Prüffrequenz und der Lastspielzahl bei zyklischer Probenbeanspruchung (Ermüdungsversuche)
- bis zu 250 Lastmessungen bei zügiger Beanspruchung

- bis zu 250 COD-Messungen bei zügiger Beanspruchung. Ein Messzyklus dauert bei zyklischer Beanspruchung je nach Prüffrequenz mit der jetzigen BASIC-Programmierung etwa 20 s bis 40 s.

Software

Praxisnah und flexibel wird die Potentialsonde durch eine gute und benutzerfreundliche Software in Menue-Technik. Z.Z. sind die vorhandenen Programme in MINC-BASIC geschrieben. Schnellere FORTRAN-Versionen sind geplant. Die vielfältige Nutzung der DUPLEX-Sonde hängt von der Art der Software ab. Z.T. erstellt bzw. in der Planung sind folgende Programm-Versionen:

5.1. Programm ERW (Ermüdungsrisswachtum)

Es eignet sich zur Durchführung von Risswachstumsmessungen bei zyklischer Beanspruchung, wobei die Abhängigkeit zwischen Risslänge und Widerstandsänderung aus Kalibriermessungen oder -rechnungen bekannt ist. Hierzu zählen praktisch alle in der Bruchmechanik benutzten Proben, s. z.B. Skizzen 2 und 3 bzw. Bild 1.

5.2. Programm ANR (Anrissbildung)

Es beinhaltet eine vereinfachte Version des Programmes ERW mit Angabe der Widerstandsänderung in % bei zyklischer Beanspruchung. Das Programm wird genutzt bei Proben ohne bekannten Zusammenhang zwischen Risslänge und Widerstandsänderung, zur Einbringung eines Ermüdungsanrisses in Bruchmechnikproben, und zur Feststellung des Anrissbeginns bei HCF- oder LCF-Untersuchungen an Fehlstellen oder Kerben, s. Bild 2.

5.3. Programm JIC (Bruchzähigkeit)

Dies Version dient der quantitativen Bestimmung des stabilen Risswachstums bei zügiger Beanspruchung bei Bruchzähigkeitsermittlungen, s. <u>Bild 3</u>. Sie eignet sich besonders zum Ersatz oder zum Vergleich zur Teilentlastungsmethode nach ASTM E 813-81 (J_{IC} -Ermittlung) bei höheren Probentemperaturen. Der Ermüdungsanriss kann im gleichen Aufbau mit dem vorgeschalteten Programm ANR auf eine vorgewählte Anrisstiefe eingebracht werden.

5.4. Programm SRK (Spannungsrisskorrosion)

Das Programm SRK ist eine vereinfachte Version des JIC und gestattet die Verfolgung der Risslängenänderung bei statisch beanspruchten Bruchmechanikproben (DCB- oder CT-Proben) mit in der Regel langer Versuchsdauer. Da der Strom in beiden Richtungen (mit wählbaren Pausenzeiten) nur kurz fliesst, ist keine Beeinträchtigung der Elektrochemie in wässrigen Medien zu erwarten. Das Programm lässt sich ebenfalls für Kriechrisswachstumsmessungen einsetzen.

335

Folgende Schwerpunkte sollen hervorgehoben werden, die auch die Genauigkeit der Messungen wesentlich beeinflussen:

- a) Fehleranalyse vor und während den Messungen auf Anschluss- und Polaritätsfehler, Kurzschlüsse, Thermoelementbruch, Prüffrequenz-, Stromkontrolle, Triggerpegel
- b) Absturzsicherung der Programme mit Fehlermeldungen und Anweisungen, Datensicherung und Reaktion auf alle bei der Erprobung aufgetretenen Fehlern mit Diagnosehilfen
- c) Bestimmung des Temperaturkoeffizienten des jeweiligen Versuchsaufbaues bzw. der Probe in einer separaten Unterroutine zur Elimination von Potentialänderungen durch Temperaturschwankungen während den eigentlichen Messungen
- d) statistische Analyse der bis zu 250 Messungen pro Messzyklus durch Mittelwertbildung, Errechnung der Standardabweichung, Elimination von Einzelmessungen mit Abweichungen > 1x Standardabweichung, neue Mittelwertbildung, Angabe der Anzahl der verwendeten Einzelmessungen (beliebig ausbaubar)
- e) Errechnung der Risswachstumsgeschwindigkeit durch lineare Regression durch am Bildschirm wählbare Anzahl von Messpunkten, Ausgabe auf Drucker und Datensicherung auf Floppy und Darstellung der momentanen Risswachstumskurve oder da/dN- <u>AK-Kurve auf dem Bildschirm</u>
- f) Darstellung der Risswachstumskurve auf dem Bildschirm in absoluten Risslängen oder in %-Widerstandsänderung bei nicht vorhandener Korrelationsfunktion mit Zoom-Möglichkeit zur Ausschnittsvergrösserung
- g) Nachauswertungen, je nach Programm, mit Risslängenkorrektur, △K-Korrektur, File-Bereinigung, Plottfile-Erstellung, ggf. Paris-Auswertung bei Risswachstumsmessungen.

6. Beispiele

Diagramm 1 zeigt sehr langsames Ermüdungsrisswachstum in einer 1"-CT-Probe mit dem Drucker-Ausdruck der Auswertung. Die maximale Streuung der Messúngen lässt sich zu ca. **VDI** BERICHTE

 \pm 8µm aus dem Bild ablesen (Probenkontaktierung s. Skizze 3). Die Risswachstumsrate da/dN wird durch lineare Regressionsrechnung durch alle Messpunkte mit hoher Genauigkeit ermittelt. Im <u>Diagramm 2</u> sieht man bei schnellerem Risswachstum sehr deutlich den Verzögerungseffekt einer vorangegangenen höheren Belastung. Erst nach Durchdringung der grösseren plastischen Zone an der Rissspitze erreicht der Riss die dem Werkstoff entsprechende neue Rissgeschwindigkeit. In <u>Diagramm 3</u> sind die Ergebnisse von Risswachstumsmessungen bei zwei verschiedenen R-Werten dargestellt. Bei Verstärkerüberprüfungen wurden an 1"-CT-Proben maximale Streuungen der Einzelmessungen von \pm 0,03% des Probenwiderstandes gemessen.

Im Bild 2 erkennt man den mit der Potentialsonde detektierten, an einer Fehlstelle in der Probe ausgehenden Ermüdungsanriss und die zur Rissfrontmarkierung vorgenommenen Laständerungen in Form von Schwingstreifen bzw. Rastlinien. Höhere Auflösungen sind durch geeignete Kontaktierung in Rissnähe (z.B. bei J_{IC}-Versuchen) oder in Kerbnähe bei Rund- oder sog. Schlüsselloch-Kerbbruchproben möglich.

7. Ausbaumöglichkeiten

Die im laufenden Laborbetrieb mit der DUPLEX-Sonde gemachten Erfahrungen werden weitgehend in Softwareänderungen und -erweiterungen berücksichtigt. Einige Erweiterungen und zusätzliche Möglichkeiten bieten sich noch an:

- Differenzmessung mit zwei Vorverstärkern zwischen zwei in Reihe geschalteten Proben
- Differenzmessung zwischen zwei identischen Kerben zur Anrisslastspielzahlermittlung an sog. Tandemproben
- Korrektur von Risslängenfehlern aufgrund plastischer Probendeformation oder magnetischen Einflüssen bei Last-oder Frequenzänderungen.

338

337

Skizze 2:

DCB-Probe für Ermüdungsrisswachstum

339

340

VDI BERICHTE

Bild 3: Stabiles Risswachstum an einer l"-CT-Probe im J_{IC}-Versuch

<u>Bild 1</u>: Ermüdungsrisswachstum an einer DCB-Probe bei 500⁰C

VDI BERICHTE

			۰.	÷	
	2	z			
		2	•	٠	

342

VDI BERICHTE

von : - Lastspiel	(-):	29966
- Risslänge	(mm):	14.50
bis : - Lastspiel	(-):2	66402
- Risslänge	(mm):	14.56
Oberlast F _{max}	(kN):	11.00
Unterlast Fmin	(kN):	1.10
R-Wert	(-);	0.10
Korrelationskoeffizient r	(-):	0.95
Mittlere Risslänge a (berechnet)	(mm):	14.53
Radius der plastischen Zone rpl	(mm):	0.05
Rissverlängerung delta a	(mm):	0.07
Risswachstum pro Lastspiel da/dN	(m/cy):	2.99E-10
Spannungsintensität delta K (MPa	x m ^{1/2}):	9.71

Wollen Sie diese Werte speichern (J/N) ?

Computerausdruck Zwischenauswertung zu MP 85073A, ROUND ROBIN, Probe CBD7

Diagramm 1: Langsames Ermüdungsrisswachstum

UM DIE MESSUNG ZU UNTERBRECHEN DRUECKEN SIE "RETURN"

Verzögertes Risswachstum bei hoch vorbelasteter Probe (Vorlast F_{max}= 50kN)

Diagramm 2: Risswachstumsmessung nach hoher Vorbelastung

۸	21Cr MoNIVS7	RT	Luft	R=.1
Δ	21Cr MoNIVS7	RT	luft	R=.5

Diagramm 3: da/dN- ⊿K-Kurven für zwei verschiedene R-Werte aus Messungen mit der DUPLEX-Sonde